3.2.61 \(\int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2} \, dx\) [161]

3.2.61.1 Optimal result
3.2.61.2 Mathematica [C] (warning: unable to verify)
3.2.61.3 Rubi [A] (verified)
3.2.61.4 Maple [B] (verified)
3.2.61.5 Fricas [C] (verification not implemented)
3.2.61.6 Sympy [F(-1)]
3.2.61.7 Maxima [F]
3.2.61.8 Giac [F]
3.2.61.9 Mupad [F(-1)]

3.2.61.1 Optimal result

Integrand size = 35, antiderivative size = 125 \[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2} \, dx=\frac {(A-C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac {2 (A+C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a^2 d}-\frac {(A-C) \sqrt {\cos (c+d x)} \sin (c+d x)}{a^2 d (1+\cos (c+d x))}-\frac {(A+C) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d (a+a \cos (c+d x))^2} \]

output
(A-C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d* 
x+1/2*c),2^(1/2))/a^2/d+2/3*(A+C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x 
+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d-(A-C)*sin(d*x+c)*cos(d 
*x+c)^(1/2)/a^2/d/(1+cos(d*x+c))-1/3*(A+C)*sin(d*x+c)*cos(d*x+c)^(1/2)/d/( 
a+a*cos(d*x+c))^2
 
3.2.61.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.78 (sec) , antiderivative size = 935, normalized size of antiderivative = 7.48 \[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2} \, dx=-\frac {4 A \cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec \left (\frac {c}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{3 d (a+a \cos (c+d x))^2 \sqrt {1+\cot ^2(c)}}-\frac {4 C \cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec \left (\frac {c}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{3 d (a+a \cos (c+d x))^2 \sqrt {1+\cot ^2(c)}}+\frac {\cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \sqrt {\cos (c+d x)} \left (-\frac {4 (A-C) \csc (c)}{d}-\frac {4 \sec \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}+\frac {d x}{2}\right ) \left (A \sin \left (\frac {d x}{2}\right )-C \sin \left (\frac {d x}{2}\right )\right )}{d}-\frac {2 \sec \left (\frac {c}{2}\right ) \sec ^3\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (A \sin \left (\frac {d x}{2}\right )+C \sin \left (\frac {d x}{2}\right )\right )}{3 d}-\frac {2 (A+C) \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \tan \left (\frac {c}{2}\right )}{3 d}\right )}{(a+a \cos (c+d x))^2}-\frac {A \cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{d (a+a \cos (c+d x))^2}+\frac {C \cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{d (a+a \cos (c+d x))^2} \]

input
Integrate[(A + C*Cos[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^ 
2),x]
 
output
(-4*A*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, S 
in[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Si 
n[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan 
[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(a + a*Cos[c + d*x]) 
^2*Sqrt[1 + Cot[c]^2]) - (4*C*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*Hypergeometric 
PFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[d*x - Arc 
Tan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2] 
*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/( 
3*d*(a + a*Cos[c + d*x])^2*Sqrt[1 + Cot[c]^2]) + (Cos[c/2 + (d*x)/2]^4*Sqr 
t[Cos[c + d*x]]*((-4*(A - C)*Csc[c])/d - (4*Sec[c/2]*Sec[c/2 + (d*x)/2]*(A 
*Sin[(d*x)/2] - C*Sin[(d*x)/2]))/d - (2*Sec[c/2]*Sec[c/2 + (d*x)/2]^3*(A*S 
in[(d*x)/2] + C*Sin[(d*x)/2]))/(3*d) - (2*(A + C)*Sec[c/2 + (d*x)/2]^2*Tan 
[c/2])/(3*d)))/(a + a*Cos[c + d*x])^2 - (A*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*S 
ec[c/2]*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]] 
^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]] 
*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]] 
*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan 
[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + T 
an[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqr 
t[1 + Tan[c]^2]]))/(d*(a + a*Cos[c + d*x])^2) + (C*Cos[c/2 + (d*x)/2]^4...
 
3.2.61.3 Rubi [A] (verified)

Time = 0.81 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.07, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {3042, 3521, 27, 3042, 3457, 3042, 3227, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^2}dx\)

\(\Big \downarrow \) 3521

\(\displaystyle \frac {\int \frac {a (5 A-C)-a (A-5 C) \cos (c+d x)}{2 \sqrt {\cos (c+d x)} (\cos (c+d x) a+a)}dx}{3 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {a (5 A-C)-a (A-5 C) \cos (c+d x)}{\sqrt {\cos (c+d x)} (\cos (c+d x) a+a)}dx}{6 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a (5 A-C)-a (A-5 C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )}dx}{6 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3457

\(\displaystyle \frac {\frac {\int \frac {2 (A+C) a^2+3 (A-C) \cos (c+d x) a^2}{\sqrt {\cos (c+d x)}}dx}{a^2}-\frac {6 (A-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {2 (A+C) a^2+3 (A-C) \sin \left (c+d x+\frac {\pi }{2}\right ) a^2}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2}-\frac {6 (A-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {\frac {2 a^2 (A+C) \int \frac {1}{\sqrt {\cos (c+d x)}}dx+3 a^2 (A-C) \int \sqrt {\cos (c+d x)}dx}{a^2}-\frac {6 (A-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2 a^2 (A+C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+3 a^2 (A-C) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{a^2}-\frac {6 (A-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\frac {2 a^2 (A+C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {6 a^2 (A-C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a^2}-\frac {6 (A-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {\frac {4 a^2 (A+C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {6 a^2 (A-C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a^2}-\frac {6 (A-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\)

input
Int[(A + C*Cos[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^2),x]
 
output
-1/3*((A + C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*(a + a*Cos[c + d*x])^2) 
+ (((6*a^2*(A - C)*EllipticE[(c + d*x)/2, 2])/d + (4*a^2*(A + C)*EllipticF 
[(c + d*x)/2, 2])/d)/a^2 - (6*(A - C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d* 
(1 + Cos[c + d*x])))/(6*a^2)
 

3.2.61.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3457
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^( 
n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/(a*(2*m + 1)*(b*c - a*d)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b 
*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*(m + n + 
2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ 
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] 
 &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 

rule 3521
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_.)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[a*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n 
 + 1)/(f*(b*c - a*d)*(2*m + 1))), x] + Simp[1/(b*(b*c - a*d)*(2*m + 1))   I 
nt[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) 
- b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n + 2) + C*(b* 
c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
 d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 
 - d^2, 0] && LtQ[m, -2^(-1)]
 
3.2.61.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(418\) vs. \(2(169)=338\).

Time = 6.66 (sec) , antiderivative size = 419, normalized size of antiderivative = 3.35

method result size
default \(\frac {\sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (12 A \left (\cos ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-4 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 A \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-12 C \left (\cos ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-4 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-6 \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-16 A \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+20 C \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 A \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-9 C \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+A +C \right )}{6 a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(419\)

input
int((A+C*cos(d*x+c)^2)/(a+cos(d*x+c)*a)^2/cos(d*x+c)^(1/2),x,method=_RETUR 
NVERBOSE)
 
output
1/6*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(12*A*cos(1/2* 
d*x+1/2*c)^6-4*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^ 
(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^3+6*A*cos(1 
/2*d*x+1/2*c)^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^( 
1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-12*C*cos(1/2*d*x+1/2*c)^6-4*C*( 
sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(co 
s(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^3-6*cos(1/2*d*x+1/2*c)^3*C*(s 
in(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(cos 
(1/2*d*x+1/2*c),2^(1/2))-16*A*cos(1/2*d*x+1/2*c)^4+20*C*cos(1/2*d*x+1/2*c) 
^4+3*A*cos(1/2*d*x+1/2*c)^2-9*C*cos(1/2*d*x+1/2*c)^2+A+C)/a^2/cos(1/2*d*x+ 
1/2*c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+ 
1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 
3.2.61.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 354, normalized size of antiderivative = 2.83 \[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2} \, dx=-\frac {2 \, {\left (3 \, {\left (A - C\right )} \cos \left (d x + c\right ) + 4 \, A - 2 \, C\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 2 \, {\left (\sqrt {2} {\left (i \, A + i \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} {\left (i \, A + i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (i \, A + i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 2 \, {\left (\sqrt {2} {\left (-i \, A - i \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} {\left (-i \, A - i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-i \, A - i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 \, {\left (\sqrt {2} {\left (-i \, A + i \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} {\left (-i \, A + i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-i \, A + i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 \, {\left (\sqrt {2} {\left (i \, A - i \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} {\left (i \, A - i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (i \, A - i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{6 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \]

input
integrate((A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^2/cos(d*x+c)^(1/2),x, algori 
thm="fricas")
 
output
-1/6*(2*(3*(A - C)*cos(d*x + c) + 4*A - 2*C)*sqrt(cos(d*x + c))*sin(d*x + 
c) + 2*(sqrt(2)*(I*A + I*C)*cos(d*x + c)^2 + 2*sqrt(2)*(I*A + I*C)*cos(d*x 
 + c) + sqrt(2)*(I*A + I*C))*weierstrassPInverse(-4, 0, cos(d*x + c) + I*s 
in(d*x + c)) + 2*(sqrt(2)*(-I*A - I*C)*cos(d*x + c)^2 + 2*sqrt(2)*(-I*A - 
I*C)*cos(d*x + c) + sqrt(2)*(-I*A - I*C))*weierstrassPInverse(-4, 0, cos(d 
*x + c) - I*sin(d*x + c)) + 3*(sqrt(2)*(-I*A + I*C)*cos(d*x + c)^2 + 2*sqr 
t(2)*(-I*A + I*C)*cos(d*x + c) + sqrt(2)*(-I*A + I*C))*weierstrassZeta(-4, 
 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 3*(sqrt(2 
)*(I*A - I*C)*cos(d*x + c)^2 + 2*sqrt(2)*(I*A - I*C)*cos(d*x + c) + sqrt(2 
)*(I*A - I*C))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + 
 c) - I*sin(d*x + c))))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2 
*d)
 
3.2.61.6 Sympy [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2} \, dx=\text {Timed out} \]

input
integrate((A+C*cos(d*x+c)**2)/(a+a*cos(d*x+c))**2/cos(d*x+c)**(1/2),x)
 
output
Timed out
 
3.2.61.7 Maxima [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + A}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2} \sqrt {\cos \left (d x + c\right )}} \,d x } \]

input
integrate((A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^2/cos(d*x+c)^(1/2),x, algori 
thm="maxima")
 
output
integrate((C*cos(d*x + c)^2 + A)/((a*cos(d*x + c) + a)^2*sqrt(cos(d*x + c) 
)), x)
 
3.2.61.8 Giac [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + A}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2} \sqrt {\cos \left (d x + c\right )}} \,d x } \]

input
integrate((A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^2/cos(d*x+c)^(1/2),x, algori 
thm="giac")
 
output
integrate((C*cos(d*x + c)^2 + A)/((a*cos(d*x + c) + a)^2*sqrt(cos(d*x + c) 
)), x)
 
3.2.61.9 Mupad [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+A}{\sqrt {\cos \left (c+d\,x\right )}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^2} \,d x \]

input
int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(a + a*cos(c + d*x))^2),x)
 
output
int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(a + a*cos(c + d*x))^2), x)